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Abstract. Bagging predictors is a method for generating multiple versions of a predictor and using these to get
an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and
does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of
the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and
regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
The vital element is the instability of the prediction method. If perturbing the learning set can cause significant
changes in the predictor constructed, then bagging can improve accuracy.
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1. Introduction

A learning set ofL consists of data{(yn,xn), n = 1, . . . , N}where they’s are either class
labels or a numerical response. Assume we have a procedure for using this learning set to
form a predictorϕ(x,L) — if the input isx we predicty by ϕ(x,L). Now, suppose we
are given a sequence of learnings sets{Lk} each consisting ofN independent observations
from the same underlying distribution asL. Our mission is to use the{Lk} to get a better
predictor than the single learning set predictorϕ(x,L). The restriction is that all we are
allowed to work with is the sequence of predictors{ϕ(x,Lk)}.

If y is numerical, an obvious procedure is to replaceϕ(x,L) by the average ofϕ(x,Lk)
overk, i.e. byϕA(x) = ELϕ(x,L) whereEL denotes the expectation overL, and the
subscriptA in ϕA denotes aggregation. Ifϕ(x,L) predicts a classj ∈ {1, . . . , J}, then
one method of aggregating theϕ(x,Lk) is by voting. LetNj = nr{k;ϕ(x,Lk) = j} and
takeϕA(x) = argmaxjNj , that is, thej for whichNj is maximum.

Usually, though, we have a single learning setL without the luxury of replicates ofL.
Still, an imitation of the process leading toϕA can be done. Take repeated bootstrap samples
{L(B)} fromL, and form{ϕ(x,L(B))}. If y is numerical, takeϕB as

ϕB(x) = avBϕ(x,L(B)).

If y is a class label, let the{ϕ(x,L(B))} vote to formϕB(x). We call this procedure
“bootstrapaggregating” and use the acronymbagging.

The{L(B)} form replicate data sets, each consisting ofN cases, drawn at random,but
with replacement, from L. Each(yn,xn) may appear repeated times or not at all in any
particularL(B). The{L(B)} are replicate data sets drawn from the bootstrap distribution
approximating the distribution underlyingL. For background on bootstrapping, see Efron
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and Tibshirani [1993]. A critical factor in whether bagging will improve accuracy is the
stability of the procedure for constructingϕ. If changes inL, i.e. a replicateL, produces
small changes inϕ, thenϕB will be close toϕ. Improvement will occur for unstable
procedures where a small change inL can result in large changes inϕ. Instability was
studied in Breiman [1994] where it was pointed out that neural nets, classification and
regression trees, and subset selection in linear regression were unstable, whilek-nearest
neighbor methods were stable.

For unstable procedures bagging works well. In Section 2 we bag classification trees on
a variety of data sets. The reduction in test set misclassification rates ranges from 6% to
77%. In Section 3 regression trees are bagged with reduction in test set mean squared error
on data sets ranging from 21% to 46%. Section 4 goes over some theoretical justification
for bagging and attempts to understand when it will or will not work well. This is illustrated
by the results of Section 5 on subset selection in linear regression using simulated data.
Section 6 gives concluding remarks. These discuss how many bootstrap replications are
useful, bagging nearest neighbor classifiers and bagging class probability estimates. The
Appendix gives brief descriptions of the data sets.

The evidence, both experimental and theoretical, is that bagging can push a good but
unstable procedure a significant step towards optimality. On the other hand, it can slightly
degrade the performance of stable procedures. There has been recent work in the literature
with some of the flavor of bagging. In particular, there has been some work on averaging
and voting over multiple trees. Buntine [1991] gave a Bayesian approach, Kwok and Carter
[1990] used voting over multiple trees generated by using alternative splits, and Heath et al.
[1993] used voting over multiple trees generated by alternative oblique splits. Dietterich
and Bakiri [1991] showed that a method for coding many class problems into a large number
of two class problems increases accuracy. There is some commonality of this idea with
bagging.

2. Bagging Classification Trees

2.1. Results for Moderate Sized Data Sets

Bagging was applied to classification trees using the following data sets
waveform (simulated)
heart
breast cancer (Wisconsin)
ionosphere
diabetes
glass
soybean

All of these except the heart data are in the UCI repository (ftp to ics.uci.edu/pub/machine-
learning-databases). Table 1 gives a numerical summary of the data sets and brief descrip-
tions are contained in the Appendix:
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Table 1.Data Set Summary

Data Set # Samples # Variables # Classes

waveform 300 21 3
heart 1395 16 2
breast cancer 699 9 2
ionosphere 351 34 2
diabetes 768 8 2
glass 214 9 6
soybean 683 35 19

In all runs the following procedure was used:

i) The data set is randomly divided into a test setT and a learning setL. In the real data
setsT is 10% of the data. In the simulated waveform data, 1800 samples are generated.
L consists of 300 of these, andT the remainder.

ii) A classification tree is constructed fromL using 10-fold cross-validation. Running the
test setT down this tree gives the misclassification rateeS(L, T ).

iii) A bootstrap sampleLB is selected fromL, and a tree grown usingLB . The original
learning setL is used as test set to select the best pruned subtree (see Section 4.3). This
is repeated 50 times giving tree classifiersφ1(x), . . . , φ50(x).

iv) If (jn,xn) ∈ T , then the estimated class ofxn is that class having the plurality in
φ1(xn), . . . , φ50(xn). If there is a tie, the estimated class is the one with the lowest
class label. The proportion of times the estimated class differs from the true class is the
bagging misclassification rateeB(L, T ).

v) The random division of the data intoL andT is repeated 100 times and the reported
ēS , ēB are the averages over the 100 iterations. For the waveform data, 1800 new cases
are generated at each iteration. Standard errors ofēS andēB over the 100 iterations are
also computed.

Table 2 gives the values of̄eS , ēB , and Table 3 their estimated standard errors.

Table 2.Misclassification Rates (%)

Data Set ēS ēB Decrease

waveform 29.1 19.3 34%
heart 4.9 2.8 43%
breast cancer 5.9 3.7 37%
ionosphere 11.2 7.9 29%
diabetes 25.3 23.9 6%
glass 30.4 23.6 22%
soybean 8.6 6.8 21%
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Table 3.Standard Errors of Misclassi-
fication

Data Set SE(ēS) SE(ēB)

waveform .2 .1
heart .2 .1
breast cancer .3 .2
ionosphere .5 .4
diabetes .4 .4
glass 1.1 .9
soybean .4 .3

For the waveform data, its known that the lowest possible error rate is 14%. Bagging
reduces the excess error by about two-thirds. We conjecture that the small decrease in the
diabetes data set is because bagging is pushing close to the minimal attainable error rate.
For instance, in the comparison by Michie et al. [1994] of 22 classifiers on this data set,
the smallest error rate achieved (estimated by 12-fold cross-validation) was 22.3%.

2.2. Statlog Comparisons for Larger Data Sets

The Statlog Project [Michie et al., 1994] compared 22 classification methods over a wide
variety of data sets. For most of these data sets, error rates were estimated using a single
cross-validation. Without knowing the random subdivisions used in these cross-validations,
the variability in the resulting error estimates makes comparisons chancey.

However, there were larger data sets used in the project which were divided into training
and test sets. Four are publically available, and we used these as a basis for comparison.
They can be accessed by ftp to ftp.strath.ac.uk and are described both in the Michie et al.
[1994] book and in the data repository. Their numerical characteristics are given in Table
4 with brief descriptions in the Appendix.

Table 4.Statlog Data Set Summary

Data Set #Training #Variables #Classes #Test Set

letters 15,000 16 26 5000
satellite 4,435 36 6 2000
shuttle 43,500 9 7 14,500
DNA 2,000 60 3 1186

In each data set, a random 10% of the training set was set aside and a tree grown on the
other 90%. The set aside 10% was then used to select the best pruned subtree. In bagging,
50 bootstrap replicates of the training set were generated and a large tree grown on each
one. The original training set is used to select the best pruned subtree (see Section 4.3).
The test set errors are listed in Table 5.
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Table 5.Test Set Misclassification Rates
(%)

Data Set eS eB Decrease

letters 12.6 6.4 49%
satellite 14.8 10.3 30%
shuttle .062 .014 77%
DNA 6.2 5.0 19%

Compared to the 22 classifiers in the Statlog Project, bagged trees ranked 2nd in accuracy
on the DNA data set, 1st on the shuttle, 2nd on the satellite and 1st on letters. Following
the Statlog method of ordering classifiers by their average rank, bagged trees was the top
classifier on these four data sets with an average rank of 1.8. The next highest of the 22 has
an average rank of 6.3. Average ranks for well-known classifiers are given in Table 6.

Table 6.Average Ranks of Classifiers

Algorithm Average Rank

Radial Basis Functions 8.0
K-NN 8.5
C4.5 9.3
Quad. Discriminant 10.8
Neural Net 12.3

Some of the misclassification rates for the CART algorithm in Table 5 differ from those
listed in the Statlog results. Possible sources for these differences are:

i) Different strategies may have been used to grow and prune the tree. I used the 90%-10%
method specified above. Its not clear what was done in the Statlog project.

ii) An important setting is the minimum node size. This setting is not specified in the
Statlog project. We used a minimum node size of one throughout.

iii) In the DNA data, different preprocessing of the input variable was used (see Appendix).

3. Bagging Regression Trees

Bagging trees was used on five data sets with numerical responses.

Boston Housing
Ozone
Friedman #1 (simulated)
Friedman #2 (simulated)
Friedman #3 (simulated)
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Table 7.Summary of Data Sets

Data Set #Cases # Variables # Test Set

Boston Housing 506 12 51
Ozone 330 8 33
Friedman #1 200 10 1000
Friedman #2 200 4 1000
Friedman #3 200 4 1000

A summary of these data sets is given in Table 7.

Brief descriptions of the data are in the Appendix. A procedure similar to that used in
classification was followed:

i) Each real data set is randomly divided into a test set of consisting of 10% of the data
and a learning setL consisting of the other 90%. In the 3 simulated data sets, 1200
cases are generated, 200 used as learning and 1000 as test.

ii) A regression tree is constructed fromL using 10-fold cross-validation. Running the
test set down this tree gives the squared erroreS(L, T ).

iii) A bootstrap sampleLB is selected fromLand a tree grown usingLB andLused to select
the pruned subtree. This is repeated 25 times giving tree predictorsφ1(x), . . . , φ25(x).

iv) For (yn,xn) ∈ T , the bagged predictor iŝyn = avkφk(xn), and the squared error
eB(L, T ) is avn(yn − ŷn)2

v) The random division of the data intoL andT is repeated 100 times and the errors
averaged to givēeS , ēB . For the simulated data, the 1200 cases are newly generated
for each repetition.

Table 8 lists the values of̄eS , ēB , and Table 9 gives their estimated standard errors.

Table 8.Mean Squared Test Set Error

Data Set ēS ēB Decrease

Boston Housing 20.0 11.6 42%
Ozone 23.9 18.8 21%
Friedman #1 11.4 6.1 46%
Friedman #2 31,100 22,100 29%
Friedman #3 .0403 .0242 40%
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Table 9.Standard Errors

Data Set SE(ēS) SE(ēB)

Boston Housing 1.0 .6
Ozone .8 .6
Friedman #1 .10 .06
Friedman #2 300 100
Friedman #3 .0005 .0003

4. Why Bagging Works

4.1. Numeric Prediction

Let each(y,x) case inL be independently drawn from the probability distributionP .
Supposey is numerical andφ(x,L) the predictor. Then the aggregated predictor is the
average overL of φ(x,L), i.e.

φA(x) = ELφ(x,L).

Takex to be a fixed input value andy an output value. Then

EL(y − φ(x,L))2 = y2 − 2yELφ(x,L) + ELφ
2(x,L). (4.1)

UsingELφ(x,L) = φA(x) and applying the inequalityEZ2 ≥ (EZ)2 to the third term
in (4.1) gives

EL(y − φ(x,L))2 ≥ (y − φA(x))2. (4.2)

Integrating both sides of (4.2) over the jointy,x output-input distribution, we get that the
mean-squared error ofφA(x) is lower than the mean-squared error averaged overL of
φ(x,L).

How much lower depends on how unequal the two sides of

[ELϕ(x,L)]2 ≤ ELϕ
2(x,L)

are. The effect of instability is clear. Ifϕ(x,L) does not change too much with replicateL
the two sides will be nearly equal, and aggregation will not help. The more highly variable
theϕ(x,L) are, the more improvement aggregation may produce. ButϕA always improves
onϕ.

Now φA depends not only onx but also the underlying probability distributionP from
which L is drawn, i.e. φA = φA(x, P ). But the bagged estimate is notϕA(x, P ), but
rather

ϕB(x) = ϕA(x, PL),

wherePL is the distribution that concentrates mass1/N at each point(yn,xn) ∈ L, (PL
is called the bootstrap approximation toP ). ThenϕB is caught in two currents: on the one
hand, if the procedure is unstable, it can give improvement through aggregation. On the
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other side, if the procedure is stable, thenϕB = ϕA(x, PL) will not be as accurate for data
drawn fromP asϕA(x, P ) ' ϕ(x,L).

There is a cross-over point between instability and stability at whichϕB stops improving
on ϕ(x,L) and does worse. This has a vivid illustration in the linear regression subset
selection example in the next section. There is another obvious limitation of bagging. For
some data sets, it may happen thatϕ(x,L) is close to the limits of accuracy attainable on
that data. Then no amount of bagging will do much improving. This is also illustrated in
the next section.

4.2. Classification

In classification, a predictorϕ(x,L) predicts a class labelj ∈ {1, . . . , J}. Denote

Q(j|x) = P (φ(x,L) = j).

The interpretation ofQ(j|x) is this: over many independent replicates of the learning set
L, φ predicts class labelj at inputx with relative frequencyQ(j|x). Let P (j|x) be the
probability that inputx generates classj. Then the probability that the predictor classifies
the generated state atx correctly is∑

j

Q(j|x)P (j|x). (4.3)

The overall probability of correct classification is

r =
∫

[
∑
j

Q(j|x)P (j|x)]PX(dx)

wherePX(dx) is thex probability distribution.
Looking at (4.3) note that for anyQ(j|x),∑

j

Q(j|x)P (j|x) ≤ max
j
P (j|x)

with equality only if

Q(j|x) =
{

1 if P (j|x) = maxi P (i|x)
0 else

.

The predictorφ∗(x) = argmaxjP (j|x) (known as the Bayes predictor) leads to the above
expression forQ(j|x) and gives the highest attainable correct classification rate:

r∗ =
∫

max
j
P (j|x)PX(x).

Call φ order-correct at the inputx if

argmaxjQ(j|x) = argmaxjP (j|x).
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This means that if inputx results in classj more often than any other class, thenφ also
predicts classj atxmore often than any other class. An order-correct predictor is not nec-
essarily an accurate predictor. For instance, in a two class problem, supposeP (1|x) = .9,
P (2|x) = .1 andQ(1|x) = .6,Q(2|x) = .4. Then the probability of correct classification
by φ atx is .58, but the Bayes predictor gets correct classification with probability .90.

The aggregated predictor is:φA(x) = argmaxjQ(j|x). For the aggregated predictor
the probability of correct classification atx is∑

j

I(argmaxiQ(i|x) = j)P (j|x) (4.4)

whereI(·) is the indicator function. Ifφ is order-correct atx, then (4.4) equalsmaxj P (j|x).
Letting C be the set of all inputsx at whichφ is order-correct, we get for the correct
classification probability ofφA the expression

rA =
∫
x∈C

max
j
P (j|x)PX(dx) +

∫
x∈C′

[
∑
j

I(φA(x) = j)P (j|x)]PX(x).

Even ifφ is order-correct atx its correct classification rate can be far from optimal. But
φA is optimal. If a predictor is good in the sense that it is order-correct for most inputs
x, then aggregation can transform it into a nearly optimal predictor. On the other hand,
unlike the numerical prediction situation, poor predictors can be transformed into worse
ones. The same behavior regarding stability holds. Bagging unstable classifiers usually
improves them. Bagging stable classifiers is not a good idea.

4.3. Using the Learning Set as a Test Set

In bagging trees, the training setLB is generated by sampling from the distributionPL.
UsingLB a large treeT is constructed. The standard CART methodology finds the sequence
of minimum cost pruned subtrees ofT . The “best” pruned subtree in this sequence is selected
using either cross-validation or a test set.

The idea of a test set is that it is formed by independently sampling from the same
underlying distribution that gave rise to the learning set. In the present context, a test set
is formed by independently sampling fromPL, i.e. we can get a test set by samplingwith
replacement, from the original learning setL.

Consider sampling, with replacement, a large number of timesN ′ from L. If k(n) is
the number of times that(yn,xn) is selected, then the intuitive content of my argument is
thatk(n)/k(n′) ' 1, i.e. each case(yn,xn) will be selected about the same number of
times (ratio-wise) as any other case. Thus, using a very large test set sampled fromPL is
equivalent to just usingL as a test set.

A somewhat more convincing argument is this: if there areN cases(yn,xn) then the
number of times any particular(yn,xn) is selected has a binomial distribution withp =
1/N , andN ′ trials. The expected number of times(yn,xn) is selected isN ′p = N ′/N .
The standard deviation of the number of times(yk,xn) is selected is

√
N ′pq '

√
N ′/N .
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Thus, for alln,
k(n)/(N ′/N) ' 1 + o(1).

The fact thatL can be used as a test set for predictors grown on a bootstrap sampleLB
is more generally useful than just in a tree predictor context. For instance, in neural nets
early stopping depends on the use of a test set. Thus, in bagging neural nets, the optimal
point of early stopping can be estimated using the original learning set as a test set.

5. A Linear Regression Illustration

5.1. Forward Variable Selection

Subset selection in linear regression gives an illustration of the points made in the previous
section. With data of the formL = {(yn,xn), n = 1, . . . , N} wherex = (x1, . . . , xM )
consists ofM predictor variables, a popular prediction method consists of forming predictors
ϕ1(x), . . . , ϕM (x) whereϕm is linear inx and depends on onlym of theM x-variables.
Then one of the{ϕm} is chosen as the designated predictor. For more background, see
Breiman and Spector [1992].

A common method for constructing the{ϕm}, and one that is used in our simulation,
is forward variable entry. If the variables used inϕk arexm1 , . . . , xmk , then for each
m 6∈ {m1, . . . ,mk} form the linear regression ofy on (xm1 , . . . , xmk , xm), compute the
residual sum-of-squares RSS(m) and takexmk+1 such thatmk+1 minimizes RSS(m) and
ϕk+1(x) the linear regression based on(xm1 , . . . , xmk+1).

There are other forms of variable selection e.g. best subsets, backwards variable selection,
and variants thereof. What is clear about all of them is that they are unstable procedures
(see Breiman [1994]). The variables are competing for inclusion in the{ϕm} and small
changes in the data can cause large changes in the{ϕm}.

5.2. Simulation Structure

The simulated data used in this section are drawn from the model.

y =
∑
m

βmxm + ε

whereε is N(0, 1) (normally distributed with mean zero and variance one). The number
of variablesM = 30 and the sample size is 60. The{xm} are drawn from a mean-zero
joint normal distribution withEXiXj = ρ|i−j| and at each iteration,ρ is selected from a
uniform distribution on[0, 1].

It is known that subset selection is nearly optimal if there are only a few large non-zero
βm, and that its performance is poor if there are many small but non-zeroβm. To bridge
the spectrum, three sets of coefficients are used. Each set of coefficients consists of three
clusters; one is centered atm = 5, one atm = 15 and the other atm = 25. Each cluster is
of the form

βm = c[(h− |m− k|)+]2, m = 1, . . . , 30
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wherek is the cluster center, andh = 1, 3, 5 for the first, second and third set of coefficients
respectively. Thus, forh = 1, there are only three non-zero{βm}. Forh = 3 there are
15 non-zero{βm}, and forh = 5, there are 27 non-zero{βm}, all relatively small. The
normalizing constantc is taken so that theR2 for the data is' .75 whereR is the correlation
between the output variabley and the full least squares predictor.

For each set of coefficients, the following procedure was replicated 250 times:

i) DataL = {(yn,xn), n = 1, . . . , 60} was drawn from the model

y =
∑

βmxm + ε

where the{xm} were drawn from the joint normal distribution described above.

ii) Forward entry of variables was done usingL to get the predictorsϕ1(x), . . . , ϕM (x).
The mean-squared prediction error of each of these was computed givinge1, . . . , eM .

iii) Fifty bootstrap replicates{L(B)} ofLwere generated. For each of these, forward step-
wise regression was applied to construct predictors{ϕ1(x,L(B)), . . . , ϕM (x,L(B))}.
These were averaged over theL(B) to give the bagged sequenceϕ(B)

1 (x), . . . , ϕ(B)
M (x).

The prediction errorse(B)
1 , . . . , e

(B)
M for this sequence were computed.

These computed mean-squared-errors were averaged over the 250 repetitions to give two
sequences{ē(S)

m }, {ē(B)
m }. For each set of coefficients, these two sequences are plotted vs.

m in Figure 1a,b,c.

5.3. Discussion of Simulation Results

Looking at Figures 1a,b,c, an obvious result is that the most accurate bagged predictor is
at least as good as the most accurate subset predictor. Whenh = 1 and subset selection is
nearly optimal, there is no improvement. Forh = 3 and 5 there is substantial improvement.
This illustrates the obvious: bagging can improve only if the unbagged is not optimal.

The second point is less obvious. Note that in all three graphs there is a point past which
the bagged predictors have larger prediction error than the unbagged. The explanation is
this: linear regression usingall variables is a fairly stable procedure. The stability decreases
as the number of variables used in the predictor decreases. As noted in Section 4, for a
stable procedureϕB = ϕA(x, PL) is not as accurate asϕ ' ϕ(x, P ). The higher values

of ϕ̄(B)
m for largem reflect this fact. Asm decreases, the instability increases and there is

a cross-over point at whichϕ(B)
m becomes more accurate thanϕm.

6. Concluding Remarks

6.1. Bagging Class Probability Estimates

Some classification methods estimate probabilitiesp̂(j|x) that an object with prediction vec-
torx belongs to classj. Then the class corresponding tox is estimated asarg maxj p̂(j|x).
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Figure 1. Prediction error for subset selection and bagged subset selection.
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For such methods, a natural competitor to bagging by voting is to average thep̂(j|x) over all
bootstrap replications, gettinĝpB(j|x), and then use the estimated classarg maxj p̂B(j|x).
This estimate was computed in every classification example we worked on. The resulting
misclassification rate was always virtually identical to the voting misclassification rate.

In some applications, estimates of class probabilities are required instead of, or along
with, the classifications. The evidence so far indicates that bagged estimates are likely to
be more accurate than the single estimates. To verify this, it would be necessary to compare
both estimates with the true valuesp∗(j|x) over thex in the test set. For real data the true
values are unknown. But they can be computed for the simulated waveform data, where
they reduce to computing an expression involving error functions.

Using the waveform data, we did a simulation similar to that in Section 2 with learning
and test sets both of size 300, and 25 bootstrap replications. In each iteration, we computed
the average over the test set and classes of|p̂(j|x) − p∗(j|x)| and |p̂B(j|x) − p∗(j|x)|.
This was repeated 50 times and the results averaged. The single tree estimates had an error
of .189. The error of the bagged estimates was .124, a decrease of 34%.

6.2. How Many Bootstrap Replicates Are Enough?

In our experiments, 50 bootstrap replicates was used for classification and 25 for regression.
This does not mean that 50 or 25 were necessary or sufficient, but simply that they seemed
reasonable. My sense of it is that fewer are required wheny is numerical and more are
required with an increasing number of classes.

The answer is not too important when procedures like CART are used, because running
times, even for a large number of bootstraps, are very nominal. But neural nets progress
much more slowly and replications may require many days of computing. Still, bagging is
almost a dream procedure for parallel computing. The construction of a predictor on each
L(B) proceeds with no communication necessary from the other CPU’s.

To give some ideas of what the results are as connected with the number of bootstrap
replicates we ran the waveform data using 10, 25, 50 and 100 replicates using the same
simulation scheme as in Section 2. The results appear in Table 10.

Table 10.Bagged Misclassification Rates (%)

No. Bootstrap Replicates Misclassification Rate

10 21.8
25 19.4
50 19.3

100 19.3

The unbagged rate is 29.1, so its clear that we are getting most of the improvement using
only 10 bootstrap replicates. More than 25 bootstrap replicates is love’s labor lost.
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6.3. How Big Should the Bootstrap Learning Set Be?

In all of our runs we used bootstrap replicatesL(B) of the same size as the initial learning
setL. While a bootstrap replicate may have2, 3, . . . duplicates of a given instance, it also
leaves out about .37 of the instances. A reader of the technical report on which this paper is
based remarked that this was an appreciable loss of data, and that accuracy might improve
if a larger bootstrap set was used. We experimented with bootstrap learning sets twice the
size ofL. These left out aboute−2 = .14 of the instances. There was no improvement in
accuracy.

6.4. Bagging Nearest Neighbor Classifiers

Nearest neighbor classifiers were run on all the data sets described in Section 2 except for
the soybean data whose variables were nominal. The same random division into learning
and test sets was used with 100 bootstrap replicates, and 100 iterations in each run. A
Euclidean metric was used with each coordinate standardized by dividing by its standard
deviation over the learning set. See Table 11 for the results.

Table 11. Misclassification
Rates for Nearest Neighbor

Data Set ēS ēB

waveform 26.1 26.1
heart 5.1 5.1
breast cancer 4.4 4.4
ionosphere 36.5 36.5
diabetes 29.3 29.3
glass 30.1 30.1

Nearest neighbor is more accurate than single trees in 3 of the 6 data sets, but bagged trees
are more accurate in all of the 6 data sets.

Cycles did not have to be expended to find that bagging nearest neighbors does not change
things. Some simple computations show why. GivenN possible outcomes of a trial (the
N cases(yn,xn) in the learning set) andN trials, the probability that thenth outcome is
selected0, 1, 2, . . . times is approximately Poisson distributed withλ = 1 for largeN . The
probability that thenth outcome will occur at least once is1− (1/e) ' .632.

If there areNB bootstrap repetitions in a 2-class problem, then a test case may change
classification only if its nearest neighbor in the learning set is not in the bootstrap sample
in at least half of theNB replications. This probability is given by the probability that the
number of heads inNB tosses of a coin with probability .632 of heads is less than.5NB .
As NB gets larger, this probability gets very small. Analogous results hold forJ-class
problems.

The stability of nearest neighbor classification methods with respect to perturbations of
the data distinguishes them from competitors such as trees and neural nets.
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6.5. Conclusions

Bagging goes a ways toward making a silk purse out of a sow’s ear, especially if the sow’s
ear is twitchy. It is a relatively easy way to improve an existing method, since all that needs
adding is a loop in front that selects the bootstrap sample and sends it to the procedure
and a back end that does the aggregation. What one loses, with the trees, is a simple and
interpretable structure. What one gains is increased accuracy.

Appendix

Descriptions of Data Sets

A. Classification Data Sets

Waveform This is simulated 21 variable data with 300 cases and 3 classes each having
probability1/3. It is described in Breiman et al [1984] (a C subroutine for generating the
data is in the UCI repository subdirectory/waveform).

Heart This is data from the study referred to in the opening paragraphs of the CART book
(Breiman et. al. [1984]). To quote:

At the University of California, San Diego Medical Center, when a heart attack patient
is admitted, 19 variables are measured during the first 24 hours. These include blood
pressure, age, and 17 other ordered and binary variables summarizing the medical
symptoms considered as important indicators of the patient’s condition.

The goal of a recent medical study (see Chapter 6) was the development of a method
to identify high risk patients (those who will not survive at least 30 days) on the basis
of the initial 24-hour data.

The data base has also been studied in Olshen et al [1985]. It was gathered on a project
(SCOR) headed by John Ross Jr. Elizabeth Gilpin and Richard Olshen were instrumental in
my obtaining the data. The data used had 18 variables. Two variables with high proportions
of had missing data were deleted, together with a few other cases that missing values. This
left 779 complete cases — 77 deaths and 702 survivors. To equalize class sizes, each case
of death was replicated 9 times giving 693 deaths for a total of 1395 cases.

Breast CancerThis is data given to the UCI repository by Willian H. Wolberg, University
of Wisconsin Hospitals, Madison (see Wolberg and Mangasarian [1990]). It is two class
data with 699 cases (458 benign and 241 malignant). It has 9 variables consisting of cellular
characteristics.

Ionosphere This is radar data gathered by the Space Physics Group at Johns Hopkins
University (see Sigillito et. al. [1989]). There are 351 cases with 34 variables, consisting
of 2 attributes for each at 17 pulse numbers. There are two classes: good= some type of
structure in the ionosphere (226); bad= no structure (125).
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DiabetesThis is a data base gathered among the Pima Indians by the National Institute of
Diabetes and Digestive and Kidney Diseases. (See Smith et. al. [1988]). The data base
consists of 768 cases, 8 variables and two classes. The variables are medical measurements
on the patient plus age and pregnancy information. The classes are: tested positive for
diabetes (268) or negative (500).

Glass This data base was created in the Central Research Establishment, Home Office
Forensic Science Service Aldermaston, Reading, Berkshire. Each case consists of 9 chem-
ical measurements on one of 6 types of glass. There are 214 cases.

SoybeanThe soybean data set consists of 683 cases, 35 variables and 19 classes. The
classes are various types of soybean diseases. The variables are observations on the plants
together with some climatic variables. All are nominal. Some missing values were filled
in by their modal values.

Letters This data set was constructed by David J. Slate, Odesta Corporation. Binary
pixel displays of the 26 capital English letters were created using 20 different fonts and
then randomly distorted to create 20,000 images. Sixteen features, consisting of statistical
moments and edge counts, were extracted from each image.

Satellite This is data extracted from Landsat images. For the3 × 3 pixel area examined,
intensity readings are given in 4 spectral bands for each pixel. The middle pixel is classified
as one of 6 different soil types. The multiple authorship of the data set is explained in the
documentation in the repository.

Shuttle This data set involves shuttle controls concerning the position of radiators within
the Space Shuttle. The data originated from NASA and was provided to the archives by J.
Catlett.

DNA The classes in this data set are types of boundaries in a spliced DNA sequence. The
input variables consists of a window of 60 nucleotides each having one of 4 categorical
values(A,G,C, T ). The problem is to classify the middle point of the window as one of
two types of boundaries or neither. The data is part of the Genbank and was donated by G.
Towell, M. Noordewier and J. Shavlik.

Because some classifiers in the Statlog project could accept only numeric inputs, each of
the 60 categoricals was coded into 3 binary variables, resulting in 180 input variables. For
reasons not explained, some of the tree algorithms run on the DNA data were given the 60
categoricals as input while the CART algorithm was given the 180 binary inputs. In my
runs the 60 categorical inputs were used.

B. Regression Data Sets

Boston HousingThis data became well-known through its use in the book by Belsley,
Kuh, and Welsch [1980]. It has 506 cases corresponding to census tracts in the greater
Boston area. They-variable is median housing price in the tract. There are 12 predictor
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variables, mainly socio-economic. The data has since been used in many studies. (UCI
repository/housing).

Ozone The ozone data consists of 366 readings of maximum daily ozone at a hot spot
in the Los Angeles basin and 9 predictor variables — all meteorlogical, i.e. temperature,
humidity, etc. It is described in Breiman and Friedman [1985] and has also been used in
many subsequent studies. Eliminating one variable with many missing values and a few
other cases leaves a data set with 330 complete cases and 8 variables.

Friedman #1 All three Friedman data sets are simulated data that appear in the MARS
paper (Friedman [1991]). In the first data set, there are ten independent predictor variables
x1, . . . , x10 each of which is uniformly distributed over[0, 1]. The response is given by

y = 10 sin(πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5 + ε

whereε is N(0, 1). Friedman gives results for this model for sample sizes 50, 100, 200.
We use sample size 200.

Friedman #2, #3These two examples are taken to simulate the impedance and phase shift
in an alternating current circuit. They are 4 variable data with

#2 y = (x2
1 + (x2x3 − (1/x2x4))2)1/2 + ε2

#3 y = tan−1

(
x2x3 − (1/x2x4)

x1

)
+ ε3

wherex1, x2, x3, x4 are uniformly distributed over the ranges

0 ≤ x1 ≤ 100
20 ≤ (x2/2π) ≤ 280
0 ≤ x3 ≤ 1
1 ≤ x4 ≤ 11

The noiseε2, ε3 are distributed asN(0, σ2
2), N(0, σ2

3) with σ2, σ3 selected to give 3:1
signal/noise ratios.
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